Extended Lagrange interpolation in weighted uniform norm

نویسنده

  • Donatella Occorsio
چکیده

The author studies the uniform convergence of extended Lagrange interpolation processes based on the zeros of Generalized Laguerre polynomials. 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Lagrange interpolation on the real line

Let {pm(wα)}m be the sequence of the polynomials orthonormal w.r.t. the Sonin-Markov weight wα(x) = e−x 2 |x|. The authors study extended Lagrange interpolation processes essentially based on the zeros of pm(wα)pm+1(wα), determining the conditions under which the Lebesgue constants, in some weighted uniform spaces, are optimal.

متن کامل

Stieltjes polynomials and Lagrange interpolation

Bounds are proved for the Stieltjes polynomial En+1, and lower bounds are proved for the distances of consecutive zeros of the Stieltjes polynomials and the Legendre polynomials Pn. This sharpens a known interlacing result of Szegö. As a byproduct, bounds are obtained for the Geronimus polynomials Gn. Applying these results, convergence theorems are proved for the Lagrange interpolation process...

متن کامل

On a Weighted Interpolation of Functions with Circular Majorant

Denote by Ln the projection operator obtained by applying the Lagrange interpolation method, weighted by (1 − x), at the zeros of the Chebyshev polynomial of the second kind of degree n + 1. The norm ‖Ln‖ = max ‖f‖∞≤1 ‖Lnf‖∞, where ‖ · ‖∞ denotes the supremum norm on [−1, 1], is known to be asymptotically the same as the minimum possible norm over all choices of interpolation nodes for unweight...

متن کامل

On an Interpolation Process of Lagrange–hermite Type

Abstract. We consider a Lagrange–Hermite polynomial, interpolating a function at the Jacobi zeros and, with its first (r−1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L-spaces, 1 < p < ∞, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ...

متن کامل

A Survey of Weighted Polynomial Approximation with Exponential Weights

Let W : R → (0, 1] be continuous. Bernstein’s approximation problem, posed in 1924, deals with approximation by polynomials in the weighted uniform norm f → ‖fW‖L∞(R). The qualitative form of this problem was solved by Achieser, Mergelyan, and Pollard, in the 1950’s. Quantitative forms of the problem were actively investigated starting from the 1960’s. We survey old and recent aspects of this t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 211  شماره 

صفحات  -

تاریخ انتشار 2009